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HML and Bisimulation



Example
Consider a software controlling a car. We would like to have a property
that in any state there is a possibility to brake.

Question: How to formalise it in LTL?
Can we express this in LTL?

Definition
We say that two objects are distinguished by a formula φ if φ is satisfied
for one object and not satisfied by the second.

Lemma
If two Kripke structures S and S ′ have the same traces i.e.
TR(S) = TR(S ′) then for any LTL formula φ does not distinguish S and
S ′ .

Concluding: some interesting properties can not be analysed if we look only
into traces.



Example
Consider a software controlling a car. We would like to have a property
that in any state there is a possibility to brake.

Question: How to formalise it in LTL?

Can we express this in LTL?

Definition
We say that two objects are distinguished by a formula φ if φ is satisfied
for one object and not satisfied by the second.

Lemma
If two Kripke structures S and S ′ have the same traces i.e.
TR(S) = TR(S ′) then for any LTL formula φ does not distinguish S and
S ′ .

Concluding: some interesting properties can not be analysed if we look only
into traces.



Example
Consider a software controlling a car. We would like to have a property
that in any state there is a possibility to brake.

Question: How to formalise it in LTL?
Can we express this in LTL?

Definition
We say that two objects are distinguished by a formula φ if φ is satisfied
for one object and not satisfied by the second.

Lemma
If two Kripke structures S and S ′ have the same traces i.e.
TR(S) = TR(S ′) then for any LTL formula φ does not distinguish S and
S ′ .

Concluding: some interesting properties can not be analysed if we look only
into traces.



Example
Consider a software controlling a car. We would like to have a property
that in any state there is a possibility to brake.

Question: How to formalise it in LTL?
Can we express this in LTL?

Definition
We say that two objects are distinguished by a formula φ if φ is satisfied
for one object and not satisfied by the second.

Lemma
If two Kripke structures S and S ′ have the same traces i.e.
TR(S) = TR(S ′) then for any LTL formula φ does not distinguish S and
S ′ .

Concluding: some interesting properties can not be analysed if we look only
into traces.



Example
Consider a software controlling a car. We would like to have a property
that in any state there is a possibility to brake.

Question: How to formalise it in LTL?
Can we express this in LTL?

Definition
We say that two objects are distinguished by a formula φ if φ is satisfied
for one object and not satisfied by the second.

Lemma
If two Kripke structures S and S ′ have the same traces i.e.
TR(S) = TR(S ′) then for any LTL formula φ does not distinguish S and
S ′ .

Concluding: some interesting properties can not be analysed if we look only
into traces.



Example
Consider a software controlling a car. We would like to have a property
that in any state there is a possibility to brake.

Question: How to formalise it in LTL?
Can we express this in LTL?

Definition
We say that two objects are distinguished by a formula φ if φ is satisfied
for one object and not satisfied by the second.

Lemma
If two Kripke structures S and S ′ have the same traces i.e.
TR(S) = TR(S ′) then for any LTL formula φ does not distinguish S and
S ′ .

Concluding: some interesting properties can not be analysed if we look only
into traces.



Example
Consider a software controlling a car. We would like to have a property
that in any state there is a possibility to brake.

Question: How to formalise it in LTL?
Can we express this in LTL?

Definition
We say that two objects are distinguished by a formula φ if φ is satisfied
for one object and not satisfied by the second.

Lemma
If two Kripke structures S and S ′ have the same traces i.e.
TR(S) = TR(S ′) then for any LTL formula φ does not distinguish S and
S ′ .

Concluding: some interesting properties can not be analysed if we look only
into traces.



Transition Tree (derivation tree)



HMS Logic

Hennessy–Milner logic
A minimum to speak about tree, φ =

tt (true),ff (false),
φ1 ∨ φ2,

φ1 ∧ φ2,

[]φ or 2φ or AXφ,
<> φ or ♦φ or EXφ.



Semantic of HML
Formula is always evaluated in a node of the transition tree.

tt holds in every node.

ff holds in the empty set.
if φ1 holds in the node s or φ2 holds in the node s then φ1 ∨ φ2
holds in s.
if φ1 holds in the node s and φ2 holds in the node s then φ1 ∧ φ2
holds in s.
<> φ holds in s if there is s ′ a child of s such that φ holds in s ′.
[]φ holds in s if for every s ′ a child of s we have that φ holds in s ′.
Later we will add to it modal operators to speak about descendants
instead of children.

Question what is the mining of []ff ?



Semantic of HML
Formula is always evaluated in a node of the transition tree.

tt holds in every node.
ff holds in the empty set.

if φ1 holds in the node s or φ2 holds in the node s then φ1 ∨ φ2
holds in s.
if φ1 holds in the node s and φ2 holds in the node s then φ1 ∧ φ2
holds in s.
<> φ holds in s if there is s ′ a child of s such that φ holds in s ′.
[]φ holds in s if for every s ′ a child of s we have that φ holds in s ′.
Later we will add to it modal operators to speak about descendants
instead of children.

Question what is the mining of []ff ?



Semantic of HML
Formula is always evaluated in a node of the transition tree.

tt holds in every node.
ff holds in the empty set.
if φ1 holds in the node s or φ2 holds in the node s then φ1 ∨ φ2
holds in s.

if φ1 holds in the node s and φ2 holds in the node s then φ1 ∧ φ2
holds in s.
<> φ holds in s if there is s ′ a child of s such that φ holds in s ′.
[]φ holds in s if for every s ′ a child of s we have that φ holds in s ′.
Later we will add to it modal operators to speak about descendants
instead of children.

Question what is the mining of []ff ?



Semantic of HML
Formula is always evaluated in a node of the transition tree.

tt holds in every node.
ff holds in the empty set.
if φ1 holds in the node s or φ2 holds in the node s then φ1 ∨ φ2
holds in s.
if φ1 holds in the node s and φ2 holds in the node s then φ1 ∧ φ2
holds in s.

<> φ holds in s if there is s ′ a child of s such that φ holds in s ′.
[]φ holds in s if for every s ′ a child of s we have that φ holds in s ′.
Later we will add to it modal operators to speak about descendants
instead of children.

Question what is the mining of []ff ?



Semantic of HML
Formula is always evaluated in a node of the transition tree.

tt holds in every node.
ff holds in the empty set.
if φ1 holds in the node s or φ2 holds in the node s then φ1 ∨ φ2
holds in s.
if φ1 holds in the node s and φ2 holds in the node s then φ1 ∧ φ2
holds in s.
<> φ holds in s if there is s ′ a child of s such that φ holds in s ′.

[]φ holds in s if for every s ′ a child of s we have that φ holds in s ′.
Later we will add to it modal operators to speak about descendants
instead of children.

Question what is the mining of []ff ?



Semantic of HML
Formula is always evaluated in a node of the transition tree.

tt holds in every node.
ff holds in the empty set.
if φ1 holds in the node s or φ2 holds in the node s then φ1 ∨ φ2
holds in s.
if φ1 holds in the node s and φ2 holds in the node s then φ1 ∧ φ2
holds in s.
<> φ holds in s if there is s ′ a child of s such that φ holds in s ′.
[]φ holds in s if for every s ′ a child of s we have that φ holds in s ′.

Later we will add to it modal operators to speak about descendants
instead of children.

Question what is the mining of []ff ?



Semantic of HML
Formula is always evaluated in a node of the transition tree.

tt holds in every node.
ff holds in the empty set.
if φ1 holds in the node s or φ2 holds in the node s then φ1 ∨ φ2
holds in s.
if φ1 holds in the node s and φ2 holds in the node s then φ1 ∧ φ2
holds in s.
<> φ holds in s if there is s ′ a child of s such that φ holds in s ′.
[]φ holds in s if for every s ′ a child of s we have that φ holds in s ′.
Later we will add to it modal operators to speak about descendants
instead of children.

Question what is the mining of []ff ?



Semantic of HML
Formula is always evaluated in a node of the transition tree.

tt holds in every node.
ff holds in the empty set.
if φ1 holds in the node s or φ2 holds in the node s then φ1 ∨ φ2
holds in s.
if φ1 holds in the node s and φ2 holds in the node s then φ1 ∧ φ2
holds in s.
<> φ holds in s if there is s ′ a child of s such that φ holds in s ′.
[]φ holds in s if for every s ′ a child of s we have that φ holds in s ′.
Later we will add to it modal operators to speak about descendants
instead of children.

Question what is the mining of []ff ?



What is the power of HML
Question: What are the trees that can be distinguished using HML?

What can we distinguish by formulas with modal depth 1.
What can we distinguish by formulas with modal depth 2.
What can we distinguish by formulas with modal depth 3.
What can we distinguish by formulas with modal depth 4.

Unlabelled case:

Definition
Bisimulation B is any relation on a set of configurations (nodes) that
satisfies following conditions

1 if (s, s ′) ∈ B then for every t such that s → t there is t ′ such that
s ′ → t ′ and (t, t ′) ∈ B,

2 if (s, s ′) ∈ B then for every t ′ such that s ′ → t ′ there is t such that
s → t and (t, t ′) ∈ B.

We denote it by s ∼B s ′.
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Bisimulation relation

Theorem
A pair of configurations (s, s ′) can not be distinguished by HML formula
if and only if there is a bisimulation relation B such that s ∼B s ′.

We need a few lemmas.

Lemma
Union of bisimulations is a bisimulation.

Definition
The biggest bisimulation is called the bisimilarity relation and
denoted by ∼.
We say that two configurations (s, s ′) are bisimilar if s ∼ s ′.

Bisimilarity is an equivalence relation.
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The proof of the theorem (idea).

←−
1 By negation, suppose there is a formula φ that distinguishes (s, s ′),

we prove that (s, s ′) is not en element of any bisimulation relation.

2 By induction on the modal depth of the formula.

−→

1 Let X be a set of pairs of states that can not be distinguished by
HML.

2 We prove that X is a bisimulation relation.
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CTL and CTL*



An extension of HML - CTL

Definition
1 A state formula φ = tt|¬φ1|φ1 ∧ φ2|pi |Aα|Eα
2 A path formula (restricted LTL) α = Xφ1|φ1Uφ2|Fφ1|Gφ1
3 where φ are state formulas and α are path formulas.

Semantics

pi means that the predicate pi holds in the configuration in which
the formula is evaluated (current configuration).
Aα for every run r starting at the current configuration the formula
α holds for a sequence of states of r .
Eα there is a run r starting at the current configuration such that
the formula α holds for the sequence of states of r .



Exercise

Fφ = trueUφ,
Gφ = ¬(F¬φ)

Which of the following pairs of CTL formulas are equivalent? For those
which are not, find a model of one of the pair which is not a model of the
other:a

1 EFφ and EGφ,
2 EFφ ∨ EFτ and EF (φ ∨ τ),
3 AFφ ∨ AFτ and AF (φ ∨ τ),
4 AF¬φ and ¬EGφ.

Write a CTL formula which stays that there is always a possibility of
braking.

aexercise from
https://www.win.tue.nl/ andova/education/2IF25/Ex2Solutions.pdf
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LTL vs. CTL
Evaluation of LTL in a state.
We consider all traces starting in a given state.

Lemma
There are properties which can be expressed in LTL and can not in CTL
and vice versa.

Example (LTL not in CTL)
A F G (black = true)
For all runs there will be a moment from which onward holds (black =
true).

The idea is to construct two sequences of systems Ti and T ′i such
that:

1 (Ti , s0) |= AFG(black = true) but (T ′i , s0) 6|= AFG(black = true).
2 (Ti , s0) and (T ′i , s ′0) are not distinguished by any CTL formula of the

modal depth i .

Look: https://www.youtube.com/watch?v=OAf7q3X71-o (min 58)

https://www.youtube.com/watch?v=OAf7q3X71-o
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Lemma
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Example (CTL not in LTL)
A G E F (brake == true)

Two systems have the same
sets of traces but only one sat-
isfies the formula in CTL.
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Proof.
Let ∼i not distinguishable by
CTL formulas of depth i .

Lemma (Auxiliary)
Pi ∼i Pj for i ≤ j . Ri ∼i Rj
for i ≤ j .

Proof.
Via induction on i , ( the size
of the formula).
Induction hypothesis:
Pk ∼i Pj , Rk ∼i Rj for
i ≤ k ≤ j .



Proof.
Let ∼i not distinguishable by
CTL formulas of depth i .

Ti ∼i T ′i .
Via induction on i , ( the size
of the formula).
Induction hypothesis:
Tk ∼i T ′j for i ≤ k ≤ j .



Evaluation of CTL

Lemma
A CTL formula φ can be evaluated in time proportional to the length of
the formula times size of the Kripke structure.

Proof.
By induction on the derivation tree of the formula.



Bisimulation and CTL
Lemma
Two configurations s and s ′ are bisimilar if and only if s and s ′ can not be
distinguished by any CTL formula φ.

Proof ←− (not distinguishable by CTL =⇒ bisimilar).

If they are not distinguishable by CTL, then they are not
distinguishable by HML with predicates.
Indeed, HML with predicates is a fragment of CTL.
We already proved that if (s, s ′) are not distinguished by HML then
they are bisimilar.
The proof for HML extended with predicates is the same.
The implication is proven.

Proof −→
We need to extend our understanding of bisimulation first.
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Game characterisation of Bisimilarity
Definition
A bisimulation game is played in rounds between two players Spoiler and
Duplicator. Arena is a set of pairs of configurations of the Kripke
structure. Suppose that current pair of configurations is (s, s ′).
Rules of a round are as follows:

First Spoiler chooses one of configurations s or s ′. Without lost of
generality we may assume that it is s.
Next he chooses a configuration t such that s → t.
Next Duplicator chooses a configuration t ′ such that s ′ → t ′ where
s ′ is a configuration no chosen by Spoiler.
The next round of the game will be plaid from (t, t ′).

Winning conditions:
If L(s) 6= L(s ′) then Spoiler wins.
If any player can not make his part of the move then he looses.
Infinite plays are won by Duplicator.



Lemma
Duplicator has a winning strategy in the bisimulation game starting from
a pair of configurations (s, s ′) if and only if s ∼ s ′.

Lemma
A winning strategy for Spoiler is a tree.
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Lemma
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Bisimulation and CTL

Lemma
Two configurations s and s ′ are bisimilar if and only if s and s ′ are not
distinguished by any CTL formula φ.

Proof −→ ( bisimilar =⇒ not distinguishable by any CTL formula).
If they are distinguishable by CTL, then they are distinguishable by
some formula φ.
We construct a winning strategy for Spoiler via induction on the
modal depth of the formula.



Extend even more - CTL∗

Definition
A state formula φ = tt|¬φ1|φ1 ∧ φ2|pi |Aα|Fα
A path formula (restricted LTL) α = φ|¬α1|α1 ∧ α2|Xα1|α1Uα2

Semantics

Aα for every run r starting at the current configuration the formula
α holds for TR(r).
Fα there is a run r starting at the current configuration such that
the formula α holds for TR(r).

Fact
CTL∗ subsumes CTL and LTL.
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