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Abstract. We discuss a new approach for the construction of the second-
level Neumann-Neumann coarse space. Our method is based on an in-
expensive and parallel analysis of the lower part spectrum of each sub-
domain stiffness matrix. We show that the method is flexible enough to
converge fast on nonstandard decompositions and various types of finite
elements used in structural analysis packages.

1 Introduction

In this paper, we consider a coarse space construction method for Neumann-
Neumann domain decomposition methods used in the iterative substructuring
solution of finite element problems with a symmetric and positive definite stiff-
ness matrix K. Below we shall briefly introduce the concepts and notation that
will be used in the rest of the paper.

Let the finite element triangulation of the physical domain Ω be decomposed
into N non-overlapping subdomains Ωi, i = 1, . . . , N . For the ith subdomain, let
us first number the inner nodes followed by the interface (subdomain boundary)
nodes. As a result, the stiffness matrix K(i) for subdomain Ωi can be written as

K(i) =

(

K(i)
II K(i)

IB

K(i)
BI K(i)

BB

)

(1)

We call the matrices K(i) Neumann matrices, they are symmetric, but those that
have no external boundary condition may be singular. We also call such subdo-
mains that have a singular Neumann matrix for floating substructures. Let us
consider an iterative substructuring algorithm [13, Chapter 4] which uses the
decomposition introduced above. After elimination of the internal unknowns, an
interface problem of the form Su = g, where S =

∑N
i=1 R(i)S(i)(R(i))T remains

to be solved, where R(i) denotes the prolongation operator associated with sub-
domain Ωi and S(i) is the local Schur complement of K(i) with respect to the
interface unknowns K(i)

BB ,
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S(i) = K(i)
BB −K(i)

BI · [K
(i)
II ]−1 ·K(i)

IB . (2)

This interface problem with a symmetric and positive definite matrix S
is then solved iteratively by the Preconditioned Conjugate Gradient (PCG)
method. Note that we need not assemble S, because the iterative algorithm
only requires the action of the local Schur complement matrices S(i); moreover,
the S(i) matrices may either be computed directly, or they can be expressed
implicitly through vector multiplication using the expression (2).

The Neumann-Neumann method [4] is an efficient way of preconditioning
the interface operator S under very mild assumptions on the decomposition
of the domain. This method has been significantly improved by Mandel, who
introduced a second-level variant of the Neumann-Neumann method, also known
as the Balancing Domain Decomposition Algorithm [10].

The second-level Neumann-Neumann method and its modifications have been
studied extensively during the past years, see for example [2] [5], [6], [8], [9],
[11], These methods have proved very successful, partly because they have been
tailored to the problem at hand. They require additional knowledge related to
the problem being solved: which elements are being used, what is the geometry
of the decomposition, and so on.

The goal of the method we discuss here is a bit different. Instead of trying
to solve a particular problem with optimal complexity, we rather try to design
a flexible and robust coarse space able to solve a variety of problems efficiently,
but without detailed additional information.

Our coarse space construction is based on a relatively inexpensive analysis
of the lower part of the spectrum of the local stiffness matrices. The algorithm
has been implemented in a domain decomposition software framework developed
at Parallab within the European Union research project PARASOL. Its current
version, called DD 3.0, is available from Parallab (see [1], where preliminary
results related to the overall efficiency of the method have been reported).

2 Motivation for a more flexible approach

Following [10], we define the coarse grid problem for the Neumann-Neumann pre-
conditioner by local coarse space contributions, Z(i) = span{Z(i)

k : k = 1, . . . , ni}
for each substructure, i = 1, . . . , N . The entries of the global coarse space
matrix are then constructed from the local contributions using the formula
(D(j)R(j)Z(j)

l )T · S · D(i)R(i)Z(i)
k , where {D(i)}N

i=1 is a diagonal scaling. The
local coarse space vectors Z(i) should contain the null space of the local Schur
operators S(i): ker S(i) ⊂ Z(i), see [10] for further details.

There are cases when the deficiency of the local stiffness matrix (that is,
dimker S(i)) is not known a priori and also, as we shall see, situations where
the overall convergence of the Neumann-Neumann method depends on the dis-
tribution of the nonzero eigenvalues of the local Schur complement.
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Fig. 1. Eigenvalue distribution of a local matrix S(6) (left) and of the global Schur
complement matrix S (right). For the local matrices, the 6 lowest eigenvalues corre-
spond to the rigid body motions. There is a cluster of 22 intermediate eigenvalues in
both S(6) and K(6). Also, note that these modes are not present in S, having a smallest
eigenvalue of order 108.

The former may happen when a single substructure consists of an unknown
number of disconnected parts or when substructures have an unknown number
of hanging parts.

Structural mechanics equations discretized with many shell elements may
require more flexibility in how the size of the local coarse space is adapted to the
problem. Their S(i) and K(i) matrices may contain – in addition to a cluster of
zero eigenvalues related to the rigid body modes – a cluster of relatively small,
“intermediate” eigenvalues that influence the convergence rate of the Neumann-
Neumann method. It appears that this paper is the first to propose an adaptive
algorithm that can construct an effective coarse space for problems of this kind.

Example 1 (Roof problem) Consider a cylindrical roof-like example, discretized
with triangular shell elements with 6 degrees of freedom per node. This, and
other shell examples, have been generated using the structural analysis package
SESAM by Det Norske Veritas (Norway). These elements are a mixture of usual
shells and membranes in order to improve the approximation properties.

The equations have been discretized on a 60x60 triangular finite element
mesh. The roof is made of elastic material with Young modulus = 0.21 · 1012,
Poisson ratio 0.3 and density 7.85 · 103 and fixed along the boundary; it has
been manually decomposed into 16 subdomains of rectangular shape. The roof
thickness was set to 1% of its leading dimension.

In addition to a 6-dimensional null space of the corresponding S(i) and K(i),
each “floating” subdomain’s S(i) and K(i) features a cluster of intermediate
eigenvalues which is not present in the global Schur operator S, see Figure 1.

3 Adaptively constructed eigenvector based coarse space

Our coarse space construction method is based on a relatively inexpensive eige-
nanalysis of both Neumann and Dirichlet stiffness matrices. In our approach we
make it possible to enrich the coarse space adaptively so that substructure low
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energy modes are included in the second level solve of the Neumann-Neumann
algorithm. The idea of enlarging the coarse space is in some sense similar to
the method [3] used to improve the convergence rate of the Algebraic Multigrid
Method. We note that the coarse spaces proposed and analyzed in [8] and [9]
are also enriched coarse spaces. Below there is the algorithm we use to compute
the local coarse space contributions Z(i):

Algorithm 1
For subdomain i,

1. Compute an approximation of the smallest eigenvalue λ(i)
min of K(i)

II .
2. Based on this information, set the threshold value Λ(i).
3. Calculate those eigenvectors {Z̃(i)

k } of S(i) which correspond to eigenvalues
smaller than Λ(i).

4. Define the basis of the local coarse space Z(i) as the space spanned by the
eigenvectors {Z̃(i)

k } computed in Step 3.

In Step 1, one step of Rayleigh quotient iteration (RQI) is performed in
order to determine the magnitude of the smallest eigenvalue of K(i)

II . We set the
threshold value Λ(i) in Step 2 according to (θ is a relaxation parameter):

Λ(i) := θ ·max
i
{λ(i)

min}. (3)

A drawback of setting Λ(i) according to (3) is that it requires synchronization
between the subdomains which will contribute to a reduction in the overall
parallel efficiency, [1].

In Step 3 of the algorithm, we compute all eigenvectors Z̃(i)
k of S(i) which cor-

respond to eigenvalues not exceeding Λ(i). The number of such eigenvectors may
vary significantly across the subdomains, and may be large, especially in the case
of shell problems. Knowing the threshold value, we can adapt the eigenanalysis
of S(i) and thus reduce the computational work involved almost exclusively to
those eigenvectors that finally will be included in the coarse space. As described
in [1], for a given subdomain i, the Schur complement S(i) is computed explicitly
in the Neumann-Neumann algorithm only when the Schur matrix is moderately
sized; when the interface is large, the Schur complement is available only im-
plicitly through relation (2). It turns out that in this case we can quite safely
switch to finding the lowest eigenvectors of the Neumann matrix K(i). In order
to compute the required eigenvectors of Bi, where Bi = S(i) or K(i), we use a
(block) variant of the well known RQI, calculating the eigenvectors in chunks of
M vectors until we surpass the threshold.

In Step 4 we define the basis of the local coarse space Z(i) as the set of
restrictions of Z̃(i)

k to the interface of Ωi.

3.1 Computational complexity and implementation

We found out that 2 RQI iterations are enough to get the eigenvectors with
sufficient accuracy even if di is quite large. Then the dominant computational



5

cost of the local coarse space evaluation is not more than 2(1 + di) local solves
with S(i) or K(i). This usually is more than required by the crosspoint method.
For example, taking di = 6, the estimate for the number of the rigid body
modes of a shell, our method will require 14 local solves per subdomain, while
the crosspoint method constraining all displacement degrees of freedom as in
[9, Remark 3.6] will use 9 or 12 local solves per subdomain, depending on the
subdomain shape (triangle or rectangle). When it comes to the shell examples
from DNV (Example 1) the comparison is different, since our method will require
a large di, depending on the particular problem; in Example 1 we have di ≈ 30.

Finally, note that the subproblems S(i) or K(i) on floating subdomains are
still singular. To overcome the difficulty we use a solver (MUMPS) which is able
to deal with rank deficient matrices and additionally may use a small regular-
ization parameter α, replacing problems with S(i) by nonsingular problems with
S(i) + αI.

4 Numerical experiments and discussion

The testcases have been provided by Parallab (Norway), Det Norske Veritas
(Norway) and MSC.Software (Germany) within the European ESPRIT IV re-
search project PARASOL. The convergence criterion has been to reduce the
Euclidean norm of the residual by a factor of 106. In our convergence reports,
iter denotes the number of iterations required to converge; by cdps we denote
the average number of coarse degrees of freedom per subdomain, that is, cdps
= (the order of the coarse matrix)/N . We have mostly experimented with the
eigenvector based coarse space construction method described in Section 3. We
refer to this method as to an ADAPT method. We have used 2 iterations of the in-
verse power method and a common threshold Λ(i) defined by (3) with θ = 10−3.
To get more insight into the behavior of the eigenvector method, we have also
used a simplified variant of this method, where the number di of the lowest
eigenvectors included in the definition of the local coarse space Z(i) is a priori
prescribed, using a common value di = d fixed for all subdomains. We call this
variant a DETER(d) algorithm. When possible, we compared our method with
the crosspoint method, [9], denoted here by CROSS.

Example 2 (2D elasticity) In this case, we used a unit square piece of an
elastic material with Young modulus = 0.21 · 1012, Poisson ratio 0.3 and density
7.85 · 103. The square was then decomposed automatically with METIS [7],
resulting in subdomains containing hanging elements, so that dim ker S(i) ≤ 4.
We iterated with ADAPT, DETER() with several parameters, and with the CROSS
method. Since there are only displacement degrees of freedom, the crosspoint
method we experimented with was exactly the same as the one proposed in [12].
Table 1 shows the number of iterations required by each method to converge.

As expected, DETER(4) converged in a small number of iterations, but DETER(3)
encountered severe difficulties. The reason was that, contrary to DETER(4), not
all null space modes were resolved by DETER(3) option. The difference between
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Table 1. 16x16 2D elasticity iterations (Example 2).

Partition DETER(3) DETER(4) ADAPT CROSS first-level
k-way - 19 16 - 103

recursive 61 20 16 75 99

Table 2. Iterations and coarse degrees of freedom per subdomain for Example 1.

Method DETER(6) DETER(28) ADAPT CROSS CROSS+10−4

iter - 27 33 312 20
cdps 6 28 19.5 13.5 13.5

the number of iterations for different partitioning options can be partly explained
by different shapes of the subdomains. The ADAPT method converged very well.
It correctly detected the increase in the deficiency of S(i), which resulted in
calculating a multiple of 3 local coarse vectors for some of the subdomains.
Nevertheless, the average local coarse space dimension still remained low: we
observed cdps = 5.

Let us notice the difference in the CROSS option behavior. In the case of
recursive partitioning, we were lucky to get crosspoints at all vertices of the
hanging element, so that it was taken care of at the coarse level. In the k-way
case however, the null space mode introduced by a single hanging element could
not be recognized by the CROSS option and was left on the first level, leading to
a divergence of the method.

Example 1 – continued. We compared the convergence of the second-level
Neumann-Neumann method for various coarse spaces. In this test case, every
floating subdomain had 4 crosspoints in the corners, so it was fair to compare
the CROSS option with the others. The performance of CROSS, DETER() and ADAPT
coarse spaces is summarized in Table 2.

Observe that the Neumann-Neumann method with minimal coarse space,
DETER(6), was not convergent. Good convergence rate was restored with quite a
large coarse space DETER(28), where the number of the lowest eigenmodes moved
to the second level was set equal to 28 = 6+22 – that is, to the largest number of
rigid body and intermediate modes per subdomain (see Figure 1). The adaptively
constructed eigenvector based coarse space, ADAPT, still converged satisfactorily.
Its dimension was even smaller than DETER(6), reflecting the fact that boundary
subdomains had fewer null space modes to move up to the second level. It turned
out that leaving one more intermediate mode per subdomain on the first level,
roughly doubles the number of iterations.
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On the other hand, notice the remarkable fact that using a carefully chosen1

regularization parameter α (see Section 3.1), we were able to restore very good
convergence properties of the CROSS method on this example.

Example 3 (Tubular joint) Let us end with a quite complex structural me-
chanics problem, on which the ADAPT method converges again without virtually
any knowledge of the underlying problem geometry and discretization. The prob-
lem was a tubular joint testcase from Det Norske Veritas (100,000 unknowns)
decomposed into 58 subdomains of varying shape and size. The model was dis-
cretized using both solid and shell finite elements, accompanied with special tran-
sitional elements between shells and solids. Moreover, subdomain stiffness/Schur
complement matrices vary strongly in their size.

The ADAPT method was given only the partitioned stiffness matrices. No addi-
tional data (such as: element/unknowns types, decomposition details, geometry)
was provided to the solver. Nevertheless, with the ADAPT method, the iteration
converged within an impressive number of only 22 iterations. The coarse space
constructed by the ADAPT method reached a reasonable size with cdps = 32.
We also note that the distribution of the coarse degrees of freedom was quite
non-uniform across the subdomains, ranging from 10 to 80.

The above test indicates that our method is able to deal with combined
shell–transitional–solid element types, retaining good convergence properties.

5 Conclusions

Our new coarse space approach has been designed to increase the flexibility of
the second-level Neumann-Neumann while preserving the efficiency. The coarse
space is constructed through an algebraic process, using a relatively low cost
eigenanalysis of the subdomain stiffness matrices. On several test examples, we
have shown the potential strengths of the method, in particular, the ability to
handle strange decompositions and to solve structural mechanics problems on a
variety of finite elements using a minimum amount of information regarding the
problem itself.

Usually, the new method’s convergence rate under regular decomposition was
comparable to that of custom methods. The potential weakness of the method
is that, on certain shell problems, it leads to somewhat larger coarse spaces and
thus does not scale well.
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